Algebraic Geometry over Heyting Algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Geometry over Lie Algebras

What is algebraic geometry over algebraic systems? Many important relations between elements of a given algebraic system A can be expressed by systems of equations over A. The solution sets of such systems are called algebraic sets over A. Algebraic sets over A form a category, if we take for morphisms polynomial functions in the sense of Definition 6.1 below. As a discipline, algebraic geometr...

متن کامل

Algebraic Geometry for MV-Algebras

We present a preliminary study of applying the concepts of algebraic geometry over fields to the theory of MV-algebras. We proceed along lines similar to B. Plotkin and others where an algebraic geometry over groups is developed.

متن کامل

On Heyting algebras and dual BCK-algebras

A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...

متن کامل

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

متن کامل

Profinite Heyting Algebras

For a Heyting algebra A, we show that the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely joinprime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset X. We also show that A is isomorphic to its profinite completion iff A is finitely approximable, complete, and the kernel of every fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Siberian Federal University. Mathematics & Physics

سال: 2020

ISSN: 2313-6022,1997-1397

DOI: 10.17516/1997-1397-2020-13-4-414-421